
STUDY MATERIAL

Detartment of
Computer Science

1

Procedure Oriented Programming (POP):-
Characteristics:-

1. Emphasis is on algorithms or functions.
2. Large programs are divided into smaller programs known as functions.
3. Most of the functions share global data.
4. Data move openly around the system from function to function.
5. Functions transform data from one location to another.
6. New data & functions are added difficulty whenever necessary.
7. Follows top-down approach in program design.

Drawbacks:-
1. In a large program it is very difficult to identify what data is used by

which function.
2. It does not model real world problems very well.
3. New data and functions can not be added easily.

Object Oriented Programming (OOPs):- It treats data as a critical element
in the program development and does not allow data to flow freely around the
system. Oops tries data more closely to the function that operate on it and
protects it from unintentional modifications by other function.
Features of OOP:-

1) Oops forces on data rather than functions.
2) Programs are divided into objects.
3) Data structures are designed characterize the objects.
4) Data is hidden cannot be accessed by external functions.
5) Objects many communicate with each other through methods.
6) New data and methods can be easily added.
7) It follows Bottom-up approach.

Object Oriented Programming Concepts:-
1) Class:-

 It is a user defined data type.
 It is a collection of variables and methods.
 These variables are called as “Instance Variable” and these methods are

called as “Instance Methods”.
 In Java, all information is stored with in the classes only.

2) Object:-
 It is also a user defined data type.
 Objects are basic runtime entities in an object-oriented system.
 It may represent a person, a bank account or thing.
 Object is an instance of a Class.
 It is a Class’s variable.
 When a program is executed, the object interacts by sending messages to

one another.

2

 For example, “customer” and “account” are two objects in a banking
program, and then the customer object may send a message to the account
object requesting for the balance. Each object contains data and code to
manipulate the data.
3) Data Encapsulation:-

 The covering up data and methods into a single unit is known as
encapsulation. It is the most striking feature of a class.

 The data is not accessible to the outside world and only methods in the
class access it.

 This insulation of the data from direct access by the program is called
data hiding.

4) Data abstraction:-
 It is representing essential features without including background details

or explanations.
 Classes use the concept of abstraction and are defined as a list of

abstract attributes like size, type, weight and cost, Methods that
operate on these attributes.

5) Inheritance:-
 It is the process of objects of one class gains the properties of object of

another class.
 It supports the concept of hierarchical classification.
 It provides the idea of reusability.
 This means we can add additional features to an existing class without

modifying it.
 This is deriving a new class from the existing one.
 The new class will have combined features of both these classes.

6) Polymorphism:-
 It is another important OOP concept.
 It means the ability to take more than one form.
 It is one form is used in many ways.
 For example, an operation may exhibit different behaviors in different

instances.
 The behavior depends upon the types of data used in the operation.
 For example, the operator ‘+’ is used for numbers and also used for

strings concatenation.
 These are mainly divided into 2 types.

1. Compile-Time Polymorphism (Eg:- Method Overloading)
2. Run-Time Polymorphism (Eg:- Method Overriding)

3

7) Dynamic Binding:-
 Binding refers to the linking of a function call to the code to be executed.
 Bindings are mainly 2 types. Static Binding or Dynamic Binding
 Dynamic Binding means that the code is associated with a function call at

runtime.
 Static Binding means that the code is associated with a function call at

compile-time.
 It is associated with polymorphism and inheritance.

8) Message Passing:- An OOP consists a set of objects that communicate
with each other. It involves

1. Creating classes that define objects and their behavior
2. Creating objects from class definitions
3. Establishing communication among objects.

Objects communicate with one another by sending and receiving information.
 Message passing involves specifying the name of the object, the name of
the method and the information to be sent.
For example Employee. getdata (x), Here Employee is the object, getdata is
the message and x is the parameter that contains information.

Employee. getdata (x)

Object Message Information
Benefits of OOP:- It improves greater programmer productivity, better quality
of software and lesser maintenance cost.

1) Through Inheritance, Reusability Of Code.
2) Data hiding helps the programmer to build secure programs.
3) It can be easily upgraded from small to large system.
4) Software complexity can be easily managed.
5) Message passage techniques for communication between objects make

the interface description with external systems much easier.
6) It is possible to have multiple objects to coexist without interference.
7) It is used to partition the work in a project based on objects.

Applications of OOP:-
1. It is used to design Graphical User Interface Applications.
2. Real time systems can be developed
3. Object Oriented Databases
4. Simulation and Modeling
5. Computer Aided Design (CAD), Computer Aided Manufacturing (CAM)
6. Neural Networks
7. Artificial Intelligence

4

JAVA:-Java is a general-purpose and True Object Oriented Programming
language developed by Sun Microsystems of USA in 1991. Originally called
“Oak” by James Gosling, One of the inventors of the language. Java was
designed for the development software for consumer electronic devices like
TVs, VCRs, Cell phones, etc. Java is simple, portable and highly reliable. Java is
purely Object Oriented.
 Java’s designers have borrowed the best features of many existing
languages like C and C++ and added a few new features to form simple and easy
to learn.
 Java was mainly developed two types programming one as a General
programming and other is Internet Programming. The general-purpose
programs are known as Applications and programs written for Internet are
known as Applets.

FEATURES OF JAVA LANGUAGE:- The inventors of Java wanted to design a
language solutions to some of the problems are occurred in modern programming
language. The main features are
1) Compiled and Interpreted Language:-

 Usually a computer language is either compiled or interpreted.
 Java combines both these systems.
 First, Java compiler translates source code into Bytecode.
 Bytecode are not machine-readable instructions.
 Second, Java Interpreter generates Bytecode instructions into machine-

readable instructions that can be executed by the machine.
 So Java is both a compiled and an interpreted language.

2) Platform Independent:-
 Java is the first programming language that is not tied to any particular

hardware or any operating system.
 Java programs can be easily moved from one computer system to another

or one platform to another.
 Changes and Upgrades in Operating Systems, processors and system

resources will not change in Java Programs.
 This is the reason Java has become a popular for programming on

Internet.
3) Object Oriented:-

 Java is a true object oriented language.
 Almost everything in Java is an Object.
 All programs data and code within objects and classes.

5

4) Robust and Secure:-
 Java is a Robust (Strong) language.
 It provides many safeguards to reliable code.
 It has strict compile time and runtime checking for data.
 In java the concept of Exception handling removes the errors and also

risk of crashing the system.
 Security becomes an important issue for a language used for programming

on Internet.
 Java systems not only verify all memory access but also no viruses are

communicated with an applet.
5) Distributed:-

 Java is designed as a distributed language for creating applications on
networks.

 It has shared both data and programs on networks.
 Java applications can open and access remote objects on Internet as

easily as in a local system.
 The data can be moved from one system to another by using Java

programs.
6) Simple and Small:-

 Java is a small and simple language.
 Many features of C and C++ are added in Java and some of the features

like pointers, header files, operator overloading, templates are not part
of Java.

7) Multithreaded:-
 Java supports multithreading programming.
 It means handling multiple works simultaneously.
 This means that we need not wait for the application to finish one task

before beginning another.
 For example, we can listen to an audio clip while typing a java program.

8) High performance:-
 Java performance is impressive for an interpreted language the use of

byte code.
 Java architecture is designed to reduce errors during runtime.
 The multithreading enhances execution speed of Java programs.

9) Dynamic and Extensible:-
 Java is a dynamic language.
 It is dynamically linking in new classes, methods and objects.
 Java programs support functions written in C and C++.
 These functions are known Native methods. These are linked dynamically

at run time.

6

Difference between C and JAVA:-
1. Java does not support header files.
2. Java does not support pointers.
3. Java does not global variables.
4. Java does not support struct, union and enumerated data types.
5. Java does not support GOTO.
Difference between C++ and Java:-
1. Java does not support operator overloading.
2. Java does not have template classes as in c++.
3. Java does not support multiple inheritances of classes.
4. Java does not support global variables. Every variable and method is

declared within a class.
5. Java does not use pointers.
6. No header files are used in Java
7. Java has replaced the destructor function with finalize () method.

Minimum Hardware & Software Requirements:-

Java is currently supported on Windows 95 and other windows versions.
The minimum hardware requirements of Java are
 IBM compatible 486 processor.
 Minimum 8 MB RAM.
 Minimum 2GB Hard disk.
 A windows compatible sound card
 CD ROM, mouse

Web Page:- A file is used in Internet is called as webpage. HTML
(Hypertext Markup Language) is used to design or create web pages. A Web
page is basically made up of text and HTML tags. Web pages are stored using
file extension .html. A web page is also known as HTML page or HTML
document.
World Wide Web:- It is an open-ended information retrieval system designed
to be used in the internet. This system contains known as web pages that
provide both information and controls. Tim Berner’s Lee developed it. It is
graphical part of the Internet. It is also known as collection of web sites.
Web site:- It is collection of hundreds of webpage. The starting webpage of
the web site is home page.
Web browsers:-
 It is software/application used to access the internet.
 They are used to navigate/searches the web pages in the Internet.
 They allow us to retrieve the information spread across the Internet and

display it using the HTML.

7

 Examples of web browsers are hot java, internet explorer and Netscape
navigator.

Hot Java is the default web browser from sun micro systems that
enables the display of interactive content on the web. Internet Explorer is
another popular browser developed by Microsoft for windows.
Java Environment:-
 It includes a large number of Development Tools and hundreds of Classes and

Methods.
 It contains mainly 2 parts.

1. Java Development Kit (JDK)
2. Java Standard Library (JSL)

 The Development tools are part of the system known as Java Development
Kit (JDK) and the classes and methods are part of the Java standard Library
(JSL) or Application Program Interface (API).

1) Java Development Kit (JDK):-
It comes with a collection of tools that are used for developing and

running java programs. They include
a) Appletviewer:-

 It is used to run Java Applets.
b) Javac:-

 It is also known as Java Compiler.
 It translates the Java source code files to Byte code files that

the interpreter can be understand.
c) Java:-

 It is also known as Java Interpreter.
 It runs java applets and Java applications by reading and

interpreting Byte-code files.
d) Javah:-

 It produces header files for use with native methods.
e) Javap:-

 It is also known as Java Disassembler.
 It enables to convert byte-code files into a program description

(source code).
f) Javadoc:-

 It creates HTML format documentation from Java Source code
files.

g) Jdb:-
 It is also known as Java debugger.
 It helps us to find errors in our programs at compile

time/runtime.

8

Application Program Interface (API):- The Java Standard Library or
Application Program Interface includes hundreds of classes and methods
grouped into a several Package. Package is stores collection of classes and
methods. It contains some Predefined packages. These are

1) Language Packages:- It is a collection of classes and methods required
for implementing basic features of Java. It contains Mathematical
functions, String classes and functions, etc.

2) Utility Packages:- It is a collection of classes and methods to provide
utility functions such as data & time functions and classes.

3) Input/Output Packages:- It is a collection of classes and methods are
required for input/output manipulations.

4) Networking Packages:- It is a collection of classes for communication
with other computers. These classes are used in networking.

5) AWT Packages:- AWT means Abstract Window Toolkit. It is collection
of classes and methods that implements Graphical User Interface
applications.

6) Applet Packages:- This include a set of classes and methods that allows
us to create Java Applets.

Text Editor

Java Source
Code

Javadoc

Java Compiler

Javah Java Class Files

Java
Interpreter

jdb

Java Machine
Readable Code

HTML file

Header File

9

Java Program Structure:- A Java program may contain many classes.
Classes contain data members and methods that operate on the data members
of the class. A Java program may contain one or more sections.

1) Documentation section:- It comprises a set of comment lines giving the
name of the program, author of the program and other details. Java also
uses a two styles of comments in C++
 i.e /*……… */ and // and also third style comment is //* …………………. */.

2) Package Section:- The first statement allowed in a Java file is a Package
Statement. This Statement declares a package name and informs the
compiler that the classes defined.

3) Import Statement:- This is similar to the #include statement in C. This
statement instructs the interpreter to load the class contained in the
package.

4) Interface Statements:- An interface is like a class but includes a group
of method declarations. This is also an optional section.

5) Class Definitions:- A Java program may contain multiple class definitions.
Classes are the primary elements of a Java program. The number of
classes used depends on the complexity of the problem.

6) Main Method Class:- Every Java program requires a main method, this
class and establishes part of a Java program. The main method creates
objects of various classes and establishes communication between them.
On reaching the end of main, the program terminates and the control
passes back to the operating system.

Documentation Section // Optional
Package Statements // Optional
Import Statements
Interface Statements // Optional
Class definitions
Main Method Class
{
Main Method Definition;
}

10

Java Tokens:-
 In Java, any information is stored with in the class.
 Class contains variables and methods.
 Smallest individual units in a program are known as Tokens.
 A Java program is a collection of tokens, comments and white spaces.
 Java includes five types of tokens. They are

1) Keywords:-
 These are predefined words or Reserved Words.
 It has special meaning.
 We cannot change this meaning. The compiler defines these.
 Java has reserved 60 words as Keywords.
 These are written in lower case letters.

2) Identifiers:-
 These are programmer designed tokens.
 These are used for naming classes, methods, objects, packages,

variables, etc..
 Java Identifiers follow the following rules.

1. They must not begin with a digit.
2. They can have alphabets (A..Z), digits (0-9), underscore (_) and

dollar sign ($).
3. They can be any length.
4. Java is Case sensitive. Upper case and lower case letters are

different
3) Literals:-

 These are sequence of characters or digits that represent constant
values to be stored in variables.

 Java Language specifies 5 types of Literals. These are
 Integer constants
 Float Constants
 Character Constants
 String Constants
 Back Slash Constants.

4) Operators:-
 An Operator is a symbol that tells the computer to perform

mathematical and logical manipulation. Operators are used in Java
program to manipulate data and variables.

5) Separators:- They are symbols used to indicate groups of code are
divided and arranged. They basically define the shape and function of
our code.

11

Parentheses():- It is used to enclose parameters in method definition and
invocation, also used for defining precedence in expressions, containing
expressions for flow control.
Braces{}:- It is used to contain the values of automatically initialized
arrays and define a block of code for classes, methods and local scopes.
Brackets []:- It is used to declare array types.
Semicolon ;:- It is used to separate statements.
Comma (,):- It is used to separate consecutive identifiers in a variables
declaration, also used initialize two or more variables in a for statement.
Period (.):- It is used to separate package names from sub-packages and
classes, also used to separate variable or method from a reference
variable.

Sample Java Program:-
class tara
{
public static void main (String args[])
{
System.out.println (“Sample Java Program”);
}
}

The first line “class tara” declares a class. Java is a true object oriented
language. Every thing must be placed inside a class. Every class definition in
java begins with an “{“ and ends with “}” appearing in the last line.

public static void main(String args[]) defines main method in Java. It is
similar to main() in C/C++. Every Java application program must include main().
This is the starting point for the interpreter to begin execution of the program.
A Java application can have any number of classes but only one main method in
initiate execution.
Public:- This keyword is an access specifier that declares the main() and access
to all other classes.
Static:- This keyword declares the main() belongs to the entire class not part
of any objects of the class.
Void:- It states that the main() does not return any value.
String args[] declares array of objects of the predefined String class.
System.out.println() is similar to the printf() statement of C or cout<<
construct of C++. The println() method is a member of out object, which is the
static data member of System class. Every Java statement must ends with
semicolon.

Implementing of Java Application program involves compiling & Running
the Java Program.

12

Compiling the program, we must run Java Compiler (javac) with the name of the
source file on the command line.

C:\jdk1.4.2\bin> javac tara.java
If no errors in a program, the Java Compiler creates a Bytecode file

called tara.class.
Running the Program:- After compiling, we need to use the Java Interpreter
(java) to run a program on the command line.

 C:\JDK1.4.2\bin> java tara
The interpreter looks for the main method in a program and begins execution
when executed output will come.
Java Virtual Machine(JVM):- All language compilers translate source code
into machine code. Java compiler produces an intermediate code known as
Bytecode for a machine that does not exist. The Java Virtual Machine exists
only inside the computer memory and the process of compiling a java program
into Bytecode i.e. virtual machine code. The virtual machine code is not machine
understandable. The Java interpreter generates the Machine code by acting as
an intermediary between the virtual machine and the real machine.

Data Types:- Every variable is Java has a data type. Data types specify the
size and type of values that can be stored. Data types in Java are mainly two
types. These are

1) Primitive Data Type (Predefined Data Type)
2) Non-Primitive Data Type (User Defined Data Type)

Primitive Data Types:-
 These are mainly combination of numeric and non-numeric data types.
 These are mainly two types.

o Integer type
o Float type.

Integer Type:-
 Integer type can hold whole numbers. Eg:- 123,-96 ,89.
 Java supports 4 types of Integer.
 These are byte, short, int and long.
 Java does not support unsigned types.

Java Program
(Source Code)

Virtual Machine
Code (Byte Code)

Java Compiler

Byte Code Machine Readable
Code

Java
Interpreter

13

Byte:-
 It stores smallest integer values.
 It occupies one Byte memory.
 Its range is -128 to +127 or (–27 to 27-1)

Short:-
 It occupies two Bytes Memory.
 Its range is -32,768 to +32,767 or (-215 to 215-1)

Int:-
 It occupies four Bytes Memory.
 Its range is -2147483648 to 2147483647 or (-231 to 231-1)

Long:-
 It occupies Eight Bytes Memory.
 It stores large integer values. Its range is (-263 to 263 –1).

Float Type:-

 This type to hold numbers containing fractional parts (Decimal values).
Ex:- 12.67, 89.45.

 These are two kinds of floating point storage in Java. These are float
and double.

Float types values are single precision numbers.
 It occupies 4 Bytes in memory.
 The float range is 3.4 E-038 To 3.4 E+038.

Double types represent double precision numbers.
 It occupies 8 Bytes memory.
 These are used greater precision in storage of floating point numbers.

All mathematical function (Sin, Cos, sqrt) return double values.
 Its range is 1.7e-308 to 1.7e+308.

Character Type:-
 It stores character type values in memory.
 Java provides a character data type char.
 It occupies 2 Bytes memory, but it can store only one character.

Boolean Type:-
 It is used to test a particular condition during execution of the program.
 It can take true or false values.
 It uses only one bit of storage.

14

Operators:- An Operator is a symbol that tells the computer to perform
mathematical and logical manipulation. Operators are used in programs to
manipulate data and variables. Java supports 8 types of Operators. These are

1. Arithmetic Operators
2. Relational Operators
3. Logical Operators
4. Assignment Operators
5. Increment/Decrement Operators
6. Conditional Operators
7. Bitwise Operators
8. Special Operators

1. Arithmetic Operators:- Java provides all basic arithmetic operators +
(addition), - (subtraction), * (Multiplication), / (Division) and % (Modulus
Operator). These operators can operate on any built-in numeric data type of
Java. We cannot use these operators on Boolean data type. In C/C++ modulus
operator (%) can be used in integers only but in Java % operator can be applied
to the floating-point data type.
 In Modulus division, the sign of the result is always sign of the first
operand. Ex:- -14%3=-2 -14%-3=-2 14%-3=2
 When all the operands are integers, the expression is called integer
expression and the operation is called Integer arithmetic. Integer Arithmetic
always gives integer value.

Byte Short int Long Double Float

Data Type

Primitive
Data Type

Non-Primitive
Data Type

Numeric Type Non-Numeric Type

Integer Type Floating Type Char Boolean

15

 An arithmetic operation involving only real operands is called real
arithmetic. A real operand values either in decimal or exponential notation.
 An arithmetic operation involving different type of operands is called
mixed arithmetic.
 In C/C++ % operator does not support float type values. In Java %
operator support float type values.

2. Relational Operators:- Java supports six relational operators. These are
used in checks the relations or conditions between two operands. These are <,
>, >=, <=, == and !=. A simple relation or condition contains only one relational
operator.
Syntax:- arithmetic expression2 Operator arithmetic expression2
Example:- a>b, a>c.
 When arithmetic expressions are used on either side of a relational
operator, the expression is evaluated first and then the results compared.
3. Logical Operators:- Like in C/C++, Java also three logical operators.
These are && (Logical And), || (Logical OR) and ! (Logical Not). The Logical
operators && and || are used combining two or more relations. A & B are two
conditions.
A B A&&B A||B
False False False False
False True False True
True False False True
True True True True
 If all the conditions are true then the Logical And (&&) will be true
otherwise false.

If all the conditions are false then the Logical Or (||) will be false
otherwise true.
4. Assignment Operators:- It is used to assign the some value to a variable
and an expression. The Assignment operator is “=”. Java has a set of shorthand
assignment operators +=, -+, *=, /= and %=.
Syntax:- variable operator = expression
Example:- a +=b => a=a+b
 The use of shorthand assignment operators has results in a more
efficient and easier to read.
5. Increment/Decrement Operators:- These are called as Unary operators.
Java has two unary operators. ++ Uses incremented by 1 and –- uses
decremented by 1.
Syntax:- ++Variable (Pre-Increment) Variable++ (Post Increment)
Example:- ++a => a=a+1 --a => a=a-1

16

6. Conditional Operators:- Java has a two conditional Operators. ? and :
are called as ternary operators. This operator is used to construct conditional
expression.
Syntax:- variable = (Condition) ? Expression1 : Expression2.
Example:- big = (a>b) ? a : b
 If condition is true then the Expression1 is evaluated otherwise
Expression2 is evaluated.
7. Bitwise Operators:- These operators are used to for testing the bits or
shifting them to the right or left. Bitwise operators may not be applied to float
or double. Java has 7 bitwise operators. These are & (Bitwise And), | (Bitwise
Or), ^ (Bitwise Exclusive Or), >> (Right Shift), << (Left Shift) and ~ (1’s
compliment).
A B A&B A|B A^B
0 0 0 0 0
0 1 0 1 1
1 0 0 1 1
1 1 1 1 0
Bitwise And (&):- It is like a Logical And (&&). Logical And (&&) Calculates
Logical Conditions only, but Bitwise And (&) calculates bits (0 or 1) only.
The Bitwise And (&) is 1, if all the bits have a value 1,
The Bitwise AND (&) is 0. If any one bit is 0.
Bitwise Or:- It is represented by the symbol (|).
The result of Bitwise Or (|) is 1, if at least one of the bits have a value 1.
The Bitwise OR is 0, If all the bits are 0’s.
Bitwise Exclusive Or:- It is represented by the symbol “ ^ “.
The result of Exclusive Or is 0, if all the bits are 0’s and 1’s. Otherwise it is 1.
Example:- a=51 b=34
A  1 1 0 0 1 1
B  1 0 0 0 1 0
A & B  1 0 0 0 1 0 => 34
A  1 1 0 0 1 1
B  1 0 0 0 1 0
A | B  1 1 0 0 1 1 => 51

A  1 1 0 0 1 1
B  1 0 0 0 1 0
A ^ B  0 1 0 0 0 1 => 17

Bitwise Left Shift (<<):- The shift Operators are used to move bit patterns
either to the left or to the right.

17

The Left shift operator causes all the bits in the operand to be shifted
to the left by number of positions.

The left most n bits in the original bit pattern will be shifted and
rightmost ’n’ bit positions will be filled with 0 s.
Eg:- A  1 1 0 0 1 1 = 51
 A<<1  1 1 0 0 1 1 0 = 102
 A<<2  1 1 0 0 1 1 0 0 = 204
Bitwise Right Shift (>>):- The right shift operations causes all the bits in the
operand to be shifted to the right by ‘n’ positions.
The rightmost ‘n’ bits will be lost.
The leftmost n bit positions are vacated will be filled with 0s.
Eg:- A  1 1 0 0 1 1 = 51
 A>>1  0 1 1 0 0 1 = 25
 A>>2  0 0 1 1 0 0 = 12
CONTROL STRUCTURES:-

 These are collection of tools and techniques to process the data
efficiently.

 A Java program is a set of statements executed sequentially.
 When a program breaks the sequential flow and jumps to another part of

the code is called branching.
 When the branching is based on a particular condition is called conditional

branching.
 If branching takes place without any decision is called unconditional

branching. Java supports mainly 4 control structures. These are
1. Single Conditional Control Structure
2. Multi Conditional Control Structure
3. Loop Conditional Control Structure
4. Un Conditional Control Structure

Single Conditional/Decision/Directional Control Structure:- Java Statements
are executed based on a single condition. In this type Java has two decision
making statements. They are if and if-else.
If Statement:- The If statement is a powerful single decision making
statement and is used to control the flow of execution of statement.
It checks the TRUE condition only.
Syntax:- if (Condition)
 Statement1;
 The if statement checks the condition first, If the condition is true then
the statement1 will be executed, otherwise it skips another block.
If-Else Statement:- The If-Else statement is an extension of the simple if
statement. It is basically two-way decision statement. It checks the condition
is either TRUE or FALSE.

18

Syntax:- if (Condition)
 Statement1;
 Else
 Statement2;
If the condition is true then the statement1 will be executed, otherwise
statement2 will be executed.
Example:- if (a>b)
 System.out.println (a + ”is big”);
 else
 System.out.println (b + ”is big”);

Multi Decision Control Structure:- When a series of decisions or conditions
are involved, we use the multidecision control structures. These are Nested If
and Switch statements.
Nested If:- When a series of decisions are involved and we check the two or
more conditions at a time we used Nested If. Nested If is an if statement
within another if statement.
Syntax1:- if (condition1)
 { if (condition2)
 { Statement1;
 }
 else
 { Statement2;
 }
 }
 else { if (condition2)
 { Statement1;
 }
 else
 { Statement2;
 }
 }

If the condtion1 is TRUE then check the Condition2. If the Condition2
is TRUE then statement1 will be executed otherwise statement2 will be
executed. If the condition1 is FALSE then check the condition3; If the
condition3 is TRUE then statement3 will be executed otherwise statement4 will
be executed.

Conditi
on

False Condition True Condition

19

Syntax2:-
if (Condition1) eg:- if ((a>b)&&(a>c))

 Statement1; System.out.println(“a is big”);
 else if (Condition2) else if (b>c)
 Statement2; System.out.println(“b is big”);
 else if (condition3) else
 Statement3 System.out.println(“c is big”);
 else
 Statemnt4;

 If the condition1 is true then statement1 will be executed otherwise it
checks the condition2, if the condition2 is true then statement2 will be
executed otherwise checks the condition3, if the condition3 is true then
statement3 will be executed otherwise statement4 will be executed.

COND1

COND3 COND2

Statement1 Statement2 Statement3 Statement4

True

True True

False

False False

Cond1

Statement1
Cond2

Statement2
Cond3

Statement3

Statement4

STOP

True

True

True

False

False

False

20

Switch Statement:-
 Java has a built-in multiway decision statement known as a switch.
 The switch statement test the value of a given variable or expression

against a list of case values.
 When a match is found, a block of statements with that case is executed.
 When the match is found, the remaining conditions are not executed,

then we use break statement.
 Break is used to terminate the loop.
 The value of a given variable is not matched, and then executes the

default case.
The general form of the switch is

Syntax:- switch(expression | value)
 {
 case value1: statement1; break;
 case value2: statement2; break;
 case value3: statement3; break;
 default: statementn;
 }
Example:- switch(ch)
 {
 case 1: System.out.println(“sum=” + a+b); break;
 case 2: System.out.println(“Mul=” + a*b); break;
 default: System.out.println(“Invalid Choice:”);
 }
Loop Control Structure:-

 The process of repeatedly executing a block of statements is known as
looping.

 The statements in the block may be executed any number of times from 0
to infinite number.

 If a loop is not ended, it is called as an infinite loop.
 In looping a sequence of statements are executed until condition for the

termination of the loop.
 A loop consists of two segments, one is Body of loop and the second one

is control statement. Control statement tests condition and then
directs the repeated execution of the statements in the body of the loop.
A looping process contains 3 steps. These are
1. Setting and Initialization of a variable (Initialization)
2. Test for a condition for execution of the loop (Condition)
3. Execution body of the loop (Body of the Loop)

21

The Looping control structure may be two types.
Entry level loop:- In the Entry level loop, the conditions are tested before the
start of the loop. while and for are entry leveled loop.
Exit level loop:- In the Exit level loop, the condition is tested at the end of
the loop. Do-while loop is exit level loop.
 Java language provides 3 loop control structures. They are
1) while loop 2) do while loop 3) for loop.
The While Statement :-

 The while statement is an entry level loop statement.
 It initialize the variable first then check the condition.
 If the condition is true, then the body of the loop is executed one time.

After execution of the body, it checks the condition again.
 This process was repeated until the condition is failed.

Syntax:- initialization;
 While (Condition)
 {
 Body of the loop;
 }
Example:- i=1;
 While(i<=10)
 { System.out.println(“i=” + i);
 i++;
 }

1. Start
2. Initialization of a variable
3. Check the condition. If the condition is true Goto step4;

Otherwise Goto step5.
4. Execute body of the loop then goto step2.
5. Stop.

The Do While Statement:-
 It is an Exit-level Loop.
 In this loop was executed first and after checks the condition.
 The Do statement to evaluate the body of the loop first.
 At the end of the loop, checks the condition in the while statement.
 If the condition is TRUE then the loop was executed again once.
 This process was repeated until the condition is failed.

Start

Condi
tion

Body of the
loop Stop

22

Syntax:- Initialization;
 Do
 {
 body of the loop;
 } while (condition);

Example:- i=1;
 Do
 {
 System.out.println(“i=” + i);
 i++;
 } while (i<=10);

 Do while loop executes the body of the loop at least one time even though
the condition is failed.
The For Statement:-

 The for loop is another entry-controlled loop. The general form of for
loop is

Syntax:- for (initialization; test condition; increment/decrement)
 {

body of the loop;
}

 The three sections enclosed within parentheses must be separated by
semicolons. One of the important point is all three sections are placed in the
for statement with in the one line.
Example:- for(i =1; i<=10; i++)
 {
 System.out.println(“ i= ” + i);
 }
The execution of the for statement is as follows:

1. Initialization of the variable first.
2. Check the test Condition. If the condition is true, then the body of the

loop is executed; otherwise the loop is terminated.
3. After ending the for loop it goto the increment/decrement section.
4. After the increment/decrement it again checks the condition. If the

condition is true this process will be repeated otherwise goto end.
In for loop more than one variable can be initialized and

incremented/decremented at a time in the for statement by using comma
(,) operator.
Example:- for(i=1, s=0; i<=10; i++, s=s+i)
 { body of the loop

Start

Condi
tion

Body of the
loop

Stop

23

}
Nesting of for loops:- One for statement within another for statement is
called nested for.
Syntax:- for(initilization1; condition1; inc/dec1)
 {
 for (initilization2; condition2; inc/dec2)
 {
 body of the loop;
 }
 }

24

Jumps in Loops:- Loops perform a set of operations repeatedly until the l
variables fails to satisfy the test condition. When executing a loop it becomes
desirable to skip a part of the loop or leave the loop as soon as certain condition
occurs. Java permits a jump from one statement to the ending or beginning of
loops. We use two statements jump from loop. These are break and continue.

 When break statement is encountered inside a loop, the loop is
immediately existed and program continuous with the statement immediately
following the loop. When the loops are nested, the break would only exit from
the loop containing it. The break will exit only a single loop.
Example:-
 while (condition) for(initial; condition; inc/dec)
 { {
 statements; statements;
 if (condition) if (condition)
 break; break;
 } }
 Exit from loop Exit from loop
Example Program:-
class breakexam
{
 public static void main(String arg[])
 {
 for(int i=1;i<=10;i++)
 {
 if (i==5)
 {
 break;
 }
 System.out.println("i=" + i);
 }
 }
}

 Java supports another similar statement called the continue statement.
It causes the loop to be continued with the next iteration after skipping any
statements in between.

25

Example:-
while (condition) for(initial; condition; inc/dec)

 { {
 statements; statements;
 if (condition) if (condition)
 continue; continue;
 } }
 Exit from loop Exit from loop
Example Program:-
class continueexam
{
 public static void main(String[] args)
 {
 for(int i=1;i<=10;i++)
 {
 if (i==5)
 {
 continue;
 }
 System.out.println("i=" + i);
 }
 }
}

26

CLASSES AND OBJECTS
Class: -

 Java is a true object oriented language.
 In java any information is stored within the class.
 A class is a user-defined data type.
 It is a collection of variables and methods.
 These variables are called as instance variables and these methods are

called as instance methods.
Syntax:- class classname
 {
 instance variables;
 instance methods;
 }
Adding variables:-

 The variables are declared within the class.
 They are created whenever an object of the class is created.
 We can declare the instance variables same as the local variables.

Adding methods:-
 A class with only data fields has no life.
 Methods are declared and defined inside the class but immediately after

the declaration of instance variables.
 The general form of a method declaration is

Syntax:- returntype method_ name (parameter list)
 {
 Body of the method;
 }
 The return datatype specifies the type of value the method would
return. It can be int, float, void etc. If the method does not return any value,
then it would be declared as void. The method name is valid identifier. The
parameter list is always enclosed in parentheses.
Example:- class sample
 { int a, b;
 void getdata(int x, int y)
 { a=x;
 b=y;
 }
 void display()
 { System.out.println(“a=” + a);
 System.out.println(“b=”+ b);
 }
 }

27

Creating Objects:-
 It is also user defined data type.
 Object is an instance of the class.
 Class’s variables are called as objects.
 An object in java is a block of memory that contains space to store all the

instance variables.
 Objects in java are created using the new operator.
 The new operator creates an object of the specified class and returns a

reference to that object.
General form object creation is

 Syntax1:- classname objectname; // declare the object
 Syntax2:- objectname = new classname(); // Memory allocation

Syntax3:- classname objectname = new classname ()
The first statement declaring the variable holds the object reference

and the second one assigns the memory allocation or object reference to the
variable.

Example1:- sample s1;
Example2:- s1 = new sample ();

General Example for creating the object
Example3:- sample s1 = new sample ();

Accessing Class Members:- All variables must be assigned before they are
used. Outside the class, we can not access the instance variables and the
methods directly.
Syntax:- objectname . variablename or
 Objectname . methodname (parameter)
Example:- s1. a=10 or s1. get (10,20)
Program:- class rect

{ int l, b;
 void getdata(int x, int y)
 { l=x;

b=y;
 }
 void display()
 {
 System.out.println("Length=" + l);
 System.out.println("Breadth=" + b);
 }
 int area()
 { return (l * b);
 }
}

28

class rectarea
{ public static void main(String args[])
 { rect r1 = new rect ();

r2 = new rect ();
 r1.getdata(10,20);
 r1.display();
 System.out.println("Area=" + r1.area());

 }
}

Method Overloading:-
 Methods names are same but the parameters are different and also

definitions are different. This concept is called as Method Overloading.
 It is the compile-time polymorphism.
 In this, methods are executed depending on the parameters.
 We can design a family of methods with same method name but with

different argument lists.
 The method would perform different operations depending on the

argument list in the method call.
 The correct method to be called is checking the number of arguments and

data type of arguments.
 A method call first matches the prototype having same number and data

type of arguments and then calls the appropriate method for execution.
Example:-
 class room
 { int l, b;
 void area()
 { l=10; b=20;

System.out.println(“Rectangle area=” + (l*b));
 }
 void area(int x, int y)
 { l=x;
 b=y;

System.out.println(“Rectangle area=” + (l*b));
 }
 void area(int x)
 { l=b=x;
 System.out.println(“Square area=” + (l*b));
 }
 }

29

class overload
{ public static void main(String args[])
 { room r1 = new room ();
 r1.area();
 r1.area(30);
 r1.area(40,50);
 }
}

Constructors:-
 It is special Method. It is same name as the class name.
 It does not specify any return type, not even void.
 It is automatically called when the object is initialized.
 It initializes the variables with in the class.
 Constructors have parameters is called parameter constructors.
 A class can contain two or more constructors is called as constructor

overloading.
Example:- Syntax:-
class sample
{ int a,b;
 sample()
 { a=10; b=20;
 }
 sample(int x)
 { a=b=x;
 }
 sample(int x, int y)
 { a=x; b=y;
 }
 void display()
 { System.out.println("a=" + a);
 System.out.println("b=" + b);
 }
};
class conover
{ public static void main(String[] args)
 { sample s1=new sample();
 sample s2=new sample(30);
 sample s3=new sample(40,50);
 s1.display(); s2.display(); s3.display();
 }
}

class sample
 {
 int a,b;
 sample(int x)
 {
 body of method;
 }
 }

30

Static Members:-
 It is a collection of static variables and static member functions.
 These are declared as static are called static members.
 These members are associated with the class itself.
 Static variables are initialized to zero.
 Static variables are used to have a common to all instances of a class.
 These are accessed by the class name.

Syntax:- classname. variablename
Static methods are also called using the classname. Static methods have
several restrictions:

 They can only call other static methods. are
 They can only access static data.
 They can not refer to this or super.

class sample
{
 static int a=20; // static variable
 static int b=30; // static variable
 static void display() // static method
 {
 System.out.println("a=" + a);
 System.out.println("b=" + b);
 }
};
class staticexample
{
 public static void main(String[] args)
 {

 sample.display(); // call static method
 }
}

31

Nesting Methods:-
 A method of a class can be called another method of same class is called

as nesting method.
 A method can be called by using only its name by another method of the

same class. This is known as nesting of methods.
Program:-
class sample
{

int a,b;
 sample (int x, int y) // parameter constructor
 {

a=x;
b=y;

 }
 void display()
 {

System.out.println("a=" + a);
 System.out.println("b=" + b);
 System.out.println("big=" + big()); // call another method
 }
 int big()
 {

if (a>b)
 return (a);
 else
 return(b);
 }
};
class nesting
{

public static void main(String[] args)
 {

sample s1=new sample(10,20);
 s1.display();
 }
}

32

Inheritance:-
 We can create new classes, reusing the properties of the existing ones.
 The mechanism of deriving a new class from an old one is called

inheritance.
 The old class is referred to as the super class or parent class or base

class and the new one is called the sub class or child class or derived
class.

 The sub class inherits the some or all the properties from the super
class.

 A sub class can also inherit properties from more than one super class or
more than one level.

Inheritance may take different forms
 Single Inheritance
 Multiple Inheritance
 Multilevel Inheritance
 Hierarchical Inheritance.

Java supports the concept of reusability of code. Java classes can be
reused in many ways by using inheritance.
Single Inheritance:- The new sub class is developed from only one super class is
called Single Inheritance.
Multiple Inheritance:- The new sub class is developed/derived from two or
more super classes is called multiple Inheritance.
Multilevel Inheritance:- The new sub class is derived from another sub class is
called multilevel inheritance.
Hierarchical Inheritance:- The two or more sub classes is derived from only one
super class is called hierarchical Inheritance.

Defining a Subclass:- A sub class can be defined by specifying its relationship
with the super class. The general form of defining a sub class is
Syntax:- class subclassname extends superclassname
 { instance variables declaration;
 instance methods declaration;
 };

 The keyword extends signifies that the properties of the superclassname
are extended to the subclassname.

 The sub class will contain its own variables and methods and also super
class variables and methods.

33

Single Inheritance:- The new sub class is derived from only one super class is
called Single Inheritance. The sub class inherits some or all the properties of
the super class.
Syntax:- class A
 { instance variables;
 instance methods;
 }
 class B extends A
 { instance variables;
 instance methods;
 }
Example:- class rect

{ int l, b;
 void getrect(int x, int y)
 { l=x; b=y;
 }
 void area()
 { System.out.println("Length=" + l);
 System.out.println("Breadth=" + b);
 System.out.println("Rectanle Area=" + (l*b));
 }
};
class cube extends rect
{ int h;
 void getcube(int x)
 { h=x;
 }
 void volume()
 { System.out.println("Height=" + h);
 System.out.println("Cube Volume=" + (l*b*h));
 }
};
class single
{ public static void main(String[] args)
 { cube c1 = new cube();
 c1.getrect (10, 20);
 c1.getcube (30);
 c1.area ();
 c1.volume ();
 }
}

SUPER

SUB

34

Sub class Constructor:- A sub class constructor is used to construct the
instance variable of both the subclass and the super class. The sub class
constructor uses the keyword super() to call the constructor of the super class.

 super may only be used within a subclass constructor.
 super method can call to super class constructor must appear as the

first statement within the subclass constructor.
 The parameters in the super call must match the order and type of

the instance variables declared in the super class.
Program:- class rect

{ int l, b;
 rect (int x, int y)
 { l=x;
 b=y;
 }
 void area()
 { System.out.println("Length=" + l);
 System.out.println("Breadth=" + b);
 System.out.println("Rectangle Area=" + (l*b));
 }
};
class cube extends rect
{ int h;
 cube (int x, int y, int z)
 {

super (x, y);
 h=z;
 }
 void volume()
 {
 System.out.println("Height=" + h);
 System.out.println("Cube Volume=" + (l*b*h));
 }
};
class single1
{

public static void main(String args[])
 { cube c1 = new cube(10,20,30);
 c1.area();
 c1.volume();
 }
}

35

Multilevel Inheritance:- A new sub class is derived from another sub class is
called as Multilevel Inheritance. The class A serves as a super class for the sub
class B, It serves as a super class for the sub class C. The class B is known as
intermediate super class. It provides a link for the inheritance between
A and C.
Syntax: - class A
 { instance variables;
 instance methods;
 };
 class B extends A
 { instance variables;
 instance methods;
 }
 class C extends B
 { instance variables;
 instance methods;
 }
Example:- class A

{
 int a;
 A(int x) // super class constructor
 {

a=x;
 }
 void dispA()
 {

System.out.println("A=" + a);
 }
}
class B extends A
{ int b;
 B (int x, int y)
 {
 super(x);
 b=y;
 }
 void dispB()
 {
 System.out.println("B=" + b);
 }
}

A

B

C

36

class C extends B
{

 int c;
 C(int x,int y,int z)
 {
 super(x,y);
 c=z;
 }
 void dispC()
 {
 System.out.println("C=" + c);
 }
}
class multilevel
{
 public static void main(String arg[])
 {
 C c1=new C(10,20,30);
 c1.dispA();
 c1.dispB();
 c1.dispC();
 }
};

Hierarchical Inheritance:- Two or more sub classes are derived from only one
super class is called as Hierarchical Inheritance. Inheritance is to use as a
support to the hierarchical design of a program. Many programming problems
can be displayed into a hierarchical form.
Example:-
class A
{ instance variables;
 instance methods;
}
class B extends A
{ instance variables;
 instance methods;
}
class C extends A
{ instance variables;
 instance methods;
}

A

B C

37

Program:- class A
{ int a;
 A(int x)
 { a=x;
 }
}
class B extends A
{ int b;
 B(int x, int y)
 { super(x);
 b=y;
 }
 void sum()
 {
 System.out.println("a=" + a);
 System.out.println("b=" + b);
 System.out.println("sum="+(a+b));
 }
}
class C extends A
{
 int c;
 C(int x,int y)
 { super(x);
 c=y;
 }
 void mul()
 { System.out.println("c=" + c);
 System.out.println("Mul="+(a*c));
 }
}
class hiearchical
{
 public static void main(String arg[])
 {
 B b1=new B(30,40);
 C c1=new C(10,20);
 b1.sum();
 c1.mul();
 }
};

38

Overriding Methods:-
 A method in the subclass that has the same name, same arguments and

same return types as a method in the super class.
 Then the method defined in the sub class is executed instead of the one

in the super class. This is known as overriding.
 It is the run-time polymorphism.

Program:- class A
{
 int a;
 A(int x)
 {
 a=x;
 }
 void display()
 {
 System.out.println("Super Class");
 System.out.println("a=" + a);
 }
};
class B extends A
{
 int b;
 B(int x,int y)
 {
 super(x);
 b=y;
 }
 void display()
 { System.out.println("Sub class");
 System.out.println("a=" + a);
 System.out.println("b=" + b);
 }
};

class overriding
{
 public static void main(String[] args)
 {
 B b1 = new B(10,20);
 b1.display();
 }
}

39

Final Variables:-
 A variable can declare as final then the variable is called final variable.
 The value of a final variable can never be changed.
 It is looks like a constant.
 Final variables behave like class variables and they do not take any space

on individual objects of the class.
Syntax:- final datatype variablename = value;
Example:- final int SIZE=100;
Final Method:-

 A method can be declared as final then this method is called final
method.

 All methods and variables can be overridden by default in subclasses.
 Final methods are used to prevent the subclasses from overriding the

members of the super class.
Syntax:- class A
 {
 int a=10;
 final void display() // final method
 {
 System.out.println(“a=” + a);

}
 }
 class B extends A
 {
 int b=20;
 void display() // overriding concept
 {
 System.out.println(“b=” + b);
 }
 }
 Then this program may give compile time error. Final method can not be
overridden.
Final Class:- A class that cannot be subclassed is called a final class. Final
class prevents any unwanted extensions to the class. Final class prevents the
inheritance.
Example:- final class A // final class
 { body of the class;
 }
 class B extends A
 { body of the class;
 }

40

Abstract Method:-
 A method can be declared as abstract then this method is called abstract

method.
 It is declared with in the super class and defined only in sub class.
 These methods are executed in subclass only.
 A class can contain two or more abstract methods are called as abstract

class.
 We can not create objects to the abstract class.

Arrays:- An array is a group of same data type elements are stored in line by
line in one variable. Arrays may be two types. They are

 Single dimensional arrays
 Double dimensional arrays

One Dimensional Array:- A list of items can be given one variable name using
only one subscript is called a one dimensional array.
 Like any other variables, arrays must be declared and created in the
computer memory before they are used. Creation of an array involves three
steps.

1. Declaring the array
2. Create memory allocations
3. Initialize the array

1. Declaring the array:- An array may be declared in two forms. We do not
enter the size of the arrays in the declaration.
Syntax:- datatype arrayname []; Form 1
Syntax:- datatype [] arrayname;
Example:- int a [] or int [] a;

2. Creation of Array:- After declaring an array, we need to create memory
space for array. Java allows us to create memory allocation arrays using new
operator only.
Syntax:- arrayname = new datatype [size]; Form 2
Example:- a = new int [10];
 It is also possible to combine these two steps declaration and creation
into one.
Syntax:- datatype arrayname [] = new datatype [10];
Example:- int a [] = new int [10];

3. Initialization of Arrays:- we can put values into an array is called
initialization. This is done using the array subscripts.
Syntax:- arrayname[subscript] = value
Example:- a[0] = 10; a[1] = 20.

41

 Java creates an array starting with a subscript 0 and ends with a value
one less than the size specified. Unlike C, Java protects arrays from overruns
and underruns. We can access an array beyond its boundaries will generate an
error messages. We can also initialize arrays automatically same as the normal
variables.
Syntax:- datatype arrayname [] = { list of values };
Syntax:- int a [] = { 10, 20,30, 40};
 In Java we can access the length of the array by a using the
arrayname.length. Example:- a. length
Two dimensional arrays:- An array declaration can have multiple sets of
square brackets. Two-dimensional array are stored in memory. These are like a
matrix consisting rows and columns. Each row & column represents the values
from 0 to size-1. Two-dimensional arrays are created like one-dimensional
array.
Syntax:- datatype arrayname[] [] = new datatype [size1] [size2]
Example:- int a [] [] = new int [10][10]
 We can initialize two dimensional arrays same as the like one dimensional
arrays.
Example:- int a[2][3] = {0, 0, 0, 1, 1, 1}

It is initializes the elements of the first row to zero and the second row
to one. The initialization is done by row by row.

STRINGS:-

 Strings represent a sequence of characters.
 In Java string is not a character array and is not NULL terminated.
 In Java, strings are class objects and implemented using two classes,

String and StringBuffer.
 A Java string is an instantiated object of the String class.
 Java strings are more efficient than C strings.

a) String:-

 It creates strings of fixed length.
 We can not modify the length and content.
 We can not insert characters and substrings in the middle of a string.

Java strings may be declared as
Syntax:- String stringname; (1)
 Stringname = new String (“String1”); (2)
Example:- String S1;
 S1 = new String (“ Tarakesh”);
These two statements may be combined as
Syntax:- String stringname = new String(“ string1”);

42

Example:- String s1 = new String(“Tarakesh”);
Java strings can be concatenated using the “ + “ operator. We can

also create and use arrays that contain strings. The statement is
Syntax:- String stringname [] = new String [size]
Example:- String s1[] = new String [5]
It will create an string array s1 of size 5 to hold five string constants.
String Methods:- The String class defines a number of methods that allow us
to manipulate the strings. String s1 = new String ("Tarakesh");
1. toLowerCase () :- It converts all the characters into lowercase letters.

Syntax:- System.out.println(s1. toLowerCase ()) O/P:- tarakesh
It converts the string s1 to all lowercase letters.

2. toUpperCase ():- It converts all the characters into Uppercase letters.
Syntax:- System.out.println(s1. toUpperCase()) O/P:- TARAKESH
It converts the string s1 to all uppercase letters.

3. replace(char1,char2):- It replaces all characters char1 to char2. Syntax:-
 s1. replace(‘a’, ‘A’); It converts all ‘a’ s to ‘A’ s.
output:- tArAkesh

4. trim ():- It removes white spaces at the beginning and end of the string.
 Syntax:- s1.trim()
5. equals (string):- It checks the two strings are equal or not. It returns
true if the two strings are equal otherwise false. (Lower & upper case are
different) Syntax:- s1. equals (s2)
6. equalsIgnoreCase (string):- It checks the two strings are equal or not and
ignoring the case of characters. (Lower & Upper case letters are same)

Syntax:- s1.equalsIgnoreCase(s2)
7. length():- It counts/gives the length of the string.

Syntax:- s1.length()
8. charAt (n):- It displays a character depending on position (displays the
nth character). Syntax:- s1.charAt(3);

It displays ‘a’. 4th character in the string “tarakesh”
9. concat(string):- It concatenates one to another string at end.

Syntax:- s1.concat(s2) It concatenates s1 and s2.
10. compareTo(string):- It compares the two strings.

It returns positive (>0) value if string1 > string2,
It returns negative (<0) value if string1 < string2,
and it returns zero (=0) if string1 equals string2.
Syntax:- s1.compareTo(s2); It returns positive value if s1 > s2.

11. substring (n):- It extracts/gives some portion of a string starting from nth
character to ending position.

Syntax:- s1.substring(3) It displays 4th character to ending
character.

43

12. substring (n, m):- It gives a substring starting from nth character up to
mth character (not including mth). S1 = new String(“Tarakesh”)

Syntax:- s1.substring(2,5). It displays “rak”.
13. indexOf(char):- It gives the position of character of first occurrence in a
string. Syntax:- s1.indexOf(‘a’) O/P:- 1
14. lastIndexOf(char):- It gives the position of character of last occurrence
in a string. s1=”Tarakesh”
Example:- s1.lastIndexOf(‘a’); o/p:- 3
14. toCharArray():- This method is used to convert string object values into a
character array.
Example:- char s2[] = s1.toCharArray();
// STRING SORTING
import java.io.*;
class strsort
{ public static void main(String[] args) throws IOException
 { int i, n, j;
 String s1[] = new String[10];
 String t=null;
 DataInputStream di = new DataInputStream (System. in);
 System.out.println("Enter the no of strings:");
 n=Integer.parseInt(di.readLine());
 System.out.println("Enter the Strings line by line");
 for(i=0;i<n;i++)
 s1[i]= di.readLine();
 System.out.println("Printing the Strings ");
 for(i=0;i<n;i++) System.out.print(s1[i] + " ");
 for(i=0;i<n;i++) System.out.print(s1[i] + " ");
 for(i=0;i<n;i++)
 { for(j=i+1;j<n;j++)
 { if (s1[i].compareTo(s1[j]) >0)
 { t = s1[i];
 s1[i] = s1[j];
 s1[j] = t;
 }
 }
 }
 System.out.println("\n The Sorted Strings are:");
 for(i=0;i<n;i++) System.out.print(s1[i] + " ");
 }
}

44

StringBuffer:-
 It is a peer class of String.
 It creates strings of flexible length that can be modified in length and

content.
 We can insert characters and substrings in the middle of a string, or

append another string to the end.
We can create a string by this method is
Syntax:- StringBuffer stringname = new StringBuffer(“string1”);
Example:- StringBuffer s1 = new StringBuffer(“Ramesh”);
StringBuffer Methods:-
1. setCharAt(n,’x’):- It modifies the nth character to ‘x’.
Example:- s1.setCharAt(2,’k’); s1=”Ramesh”

It modifies 3rd character to ‘k’ in string s1. O/P:- Rakesh
2. append(string):- It adds the string at the end of the first string.
Example:- s1.append(“Babu”); s1=”Ramesh”
 “Babu” is added at the end of the s1. O/P:- RameshBabu
3. insert(n,string):- It inserts the new string at the particular position of
the string. s1=”Rama Rao”
Example:- s1.insert(4,”krishna”) o/p:-Ramakrishna Rao

It inserts the string “krishna” at the 4th position of the s1.
4. reverse():- It prints the string in reverse order. S1=”RAMA”
Example:- s1.reverse() o/p:-AMAR
5. setLength(n):- It set the length of the string s1 to n. If n < s1.length () s1
is truncated. If n > s1.length () spaces are added to s1.
Example:- s1.setLength(15)
6. delete(start, end):- It deletes the character from start to end-1
position. S1=”RameshBabu”
Example:- s1.delete(3,6) o/p:-RamBabu
7. deleteCharAt (pos):- It deletes the specified character in a specified
position within a string. s1=”Ramamohan”
Example:- s1.deleteCharAt(3); o/p:-Rammohan
V E C T O R S:-

 Vector is also a predefined class.
 It is used to create a generic dynamic array.
 It can hold objects of any type and any number.
 The objects do not have to be homogeneous (i.e same type & same size).
 Vector methods are contained in the java.util package.

 A vector can be declared without specifying any size explicitly. A vector
can have an unknown number of items. When a size is specified, we can inserts
any number of items may be put into the vector. We can create a vector

45

Syntax:- Vector vector_name = new Vector()
Example:- Vector list = new Vector();
Vector has many advantages then arrays. They are

 It is convenient to use vectors to store objects.
 A vector can be used to store a list of objects that may vary in size.
 We can add and delete objects from the vector.

Drawback:- We can not directly store simple data types in a vector. We need
to convert simple data types to objects. This can be done using the wrapper
classes.

The vector class supports a number of methods can be used to manipulate
the vectors created. They are
1. list. addElement (item):- It adds the item specified to the list at the end.
 Example:- list.addElement(“Tarak”);
2. list.elementAt(pos):-It gives the name of the object depending on position.
 Example:- list.elementAt(4)
3. list. size():- It gives the total number of objects in a vector.
 Example:- list. size()
4. list. removeElement(item):- It removes the specified element from the

vector. Example:- list. removeElement(“tara”);
5. list. removeElementAt(n):- It removes the item stored in the nth position of

the list. Example:- list. removeElementAt(3)
6. list. removeAllElements():- It removes all the elements in the vector.
 Example:- list.removeAllElements()
7. list. copyInto(array):- It copies all items from vector to array.
 Example:- list.copyInto(a1)
8. list. insertElementAt(item, n):- It inserts the specified item at the nth

position of the vector.
Wrapper Classes:-

 Vectors can not handle primitive data type like int, float, long, char and
double.

 Primitive data type may be converted into object types by using wrapper
classes.

 Wrapper classes are contained in the java.lang package.
Wrapper classes for converting simple data types.
Simple Datatype Wrapper Class
 boolean Boolean
 char Character
 double Double
 float Float
 int Integer
 long Long

46

1) Converting primitive numbers to Object numbers using constructor method.
 Integer intval = new Integer (i); Primitive integer to integer object
 Float floatval = new Float(f); Primitive float to float object
 Double doubleval = new Double (d) Primitive double to double object
 Long longval = new Long(l); Primitive long to long object

2) Converting object number to primitive number by using typeValue ()
int i = intval. intValue() converts integer object to primitive integer
float f = floatval. floatValue() converts float object to primitive float
long l = longval. longValue() converts long object to primitive long
double d = doubleval. doubleValue() converts double object to primitive double

3) Converting number to String using toString () method
str = Integer. toString(i) Primitive integer to string
str = Float. toString(f) Primitive float to string
str = Long. toString(l) Primitive long to String
str = Double. toString(d) Primitive double to string

4) Converting string object to numeric object using the static method valueOf()
Dv = Double. valueOf(str) Converts string to Double object
Fv = Float. valueOf(str) Converts string to Float object
Iv = Integer. valueOf(str) converts string to Integer object
Lv = Long. valueOf(str) converts string to Long object

5) Converting Number String to Primitive numbers using parseType() Methods
int i = Integer. parseInt(str) converts string to primitive integer
float f = Float. parseFloat(str) converts string to primitive float
long l = Long. parseLong(str) converts string to primitive long
double d = Double. parseDouble(str) converts string to primitive double

47

I N T E R F A C E
 An interface is looks like a class.
 It also contains methods and variables but with a major difference.
 The difference is that interface defines only abstract methods and final

fields.
 Abstract method is a method declared in a super class and always

redefined in a subclass.
 Final variables are acts like constants.
 It supports multiple inheritances in java.

The syntax for defining an interface is very similar to a class.
The general form of an interface definition is
syntax:- interface interfacename
 {
 variables declaration;
 methods declaration;
 }
Example:- interface item
 {
 static final int a=20;
 void display();
 }
 The method definition is not included in the interface. The method
declaration ends with a semicolon. The class that implements this interface
must define the code for the method.
 Like classes, interfaces can also be extended. An interface can be sub
interfaced from other interfaces. The new sub interface will inherit all the
members of the super interface.
Syntax:- interface name1 extends name2
 {
 body of the interface
 }
 We can also combine several interfaces together into a single interface.
Syntax:- interface name1
 { body of interface1 }
 interface name2
 { body of interface2 }
 interface name3 extends name1, name2
 {
 body of interface3;
 }

48

 Interfaces are used as super class, these properties are inherited by
classes. A class inherits the properties of interface by using implements
keyword. When a class implements more than one interface, they are separated
by a comma.
Syntax:- class classname extends superclass implements interface
 {
 body of class name;
 }
Various forms of interface implementation

// Hybrid INHERITANCE
class stud
{ int sno;

void getstud(int x)
{ sno=x;
}
void dispstud()
{
System.out.println("sno="+sno);
 }

}
class marks extends stud
 { int mm,pm,cm;

 void getmarks(int x, int y, int z)
 { mm=x;

 pm=y;
 cm=z;

 }

Interface A

Class B

Class C

Class A

Class B

Class C

Interface A

Interface B

Interface A

Class B Class C

Interface C

Interface B Interface A

Class D

49

 void dispmarks()
 {
 System.out.println("mm="+mm);
 System.out.println("pm="+pm);

 System.out.println("cm="+cm);
 }

 }
 interface pmarks
 { int p1=40, p2=50;

 void disppmarks ();
 }

 class result extends marks implements pmarks
 { int total;
 public void disppmarks()
 {
 System.out.println("p1="+p1);
 System.out.println("p2="+p2);
 }
 void display()
 { total=mm+pm+cm+p1+p2;

 dispstud();
disppmarks();
 disppmarks();

 System.out.println("total="+total);
 }
 }
 class multipul
 {
 public static void main(String arg[])
 { result r1=new result();

 r1.getstud(12345);
 r1.getmarks(70,80,50);
 r1.display();

 }
 }

STUDENT

TEST

RESULT

SPORTS

50

Package:-
 It is a looks like a Directory/Folder.
 It can store a variety of classes and/or interfaces or methods together.
 Packages are acts as containers for classes.
 It is a concept similar to “class libraries” in other languages.

Benefits of packages
 The classes contained in the package of other programs can be easily

reused.
 Packages provide a way to hide classes thus preventing other programs or

packages from accessing classes.
Packages are mainly divided into two parts.
They are Application Packages and the user-defined packages.

 Java API provides a large number of classes grouped into different
packages. They are
 Language Packages:- It is a collection of classes and methods required

for implementing basic features of Java. It contains Mathematical
functions, String classes and functions, wrapper classes etc.
Ex:- java.lang

 Utility Packages:- It is a collection of classes and methods to provide
utility functions such as vectors, hash tables, data & time functions
and classes.
Ex:- java.util

 Input/Output Packages:- It is a collection of classes and methods are
required for input/output manipulations. They provide facilities for the
input and output of data.
Ex:- java.io

 Networking Packages:- It is a collection of classes for communication
with other computers. These classes are used in networking. They
include classes for communicating with local computers as well as with
internet servers.
Ex:- java.net

 AWT Packages:- AWT means Abstract Window Toolkit. It is collection
of classes and methods that implements Graphical User Interface
applications. They include classes for windows, buttons, lists, menus and
so on.
Ex:- java.awt

 Applet Packages:- This include a set of classes and methods that allows
us to creating and implementing Java Applets.
Ex:- java.applet

 We can access the classes stored in a package in two ways. The first
approach is to use the fully qualified class name of the class that wants to use.

51

The package name containing the class and then appending the class name to it
by using the dot operator. For example, the Color in the awt package.
Syntax:- import packagename. Classname;
Example:- import java. awt. Color;
 In many situations, we want to use a class in a number of places in the
program or we use many classes contained in a package.
Syntax:- import packagename. *;
Example:- import java. Awt. *;

Creating User-Defined packages:- We can create our own user-defined
packages involving the steps.

 Declare the package at the beginning of a file using the form.
Syntax:- Package package name;

 Define the class is to be put in the package and declare it public.
 Create a subdirectory under the directory where the main source files

are stored.
 Store the listing as the classname.java file in the subdirectory created.
 Compile the file. This creates .class file in the subdirectory.
 The sub-directory name must match the package name exactly.

Syntax:- package packagename;
 public class classname
 { body of the class;
 }
Example:- package p1;
 public class A
 { public void dispA()
 {
 System.out.println(“Class A”);
 }
 }
 This source file should be named A. java and stored in the sub-directory
p1. Now compile this java file. The resultant A.class will be stored in the same
sub-directory p1.
Example:- import p1. *;
 Class pkgtest
 { public static void main(String arg[])
 {
 A s1 = new A();
 s1.dispA();
 }
 }

52

This program imports the A.class from the package p1. The source file
should be saved as pkgtest. java and then compiled. The source file and
compiled file would be saved in the directory p1.
Importing classes from other packages:-
 Package p2;
 Public class B
 { public void dispB()
 {
 System.out.println(“Display A”);
 }
 }
import p1.A.
import p2.B;
class pkg
{ public static void main(String arg[])

{ A a1 = new A();
B b1 = new B();
a1.dispA();
b1.dispB();

}
}
Sub classing an import class:-
import p1.A;
class C extends A
{
void dispC()
{
System.out.println(“Display Class C”);
}
}
class pkgtest
{
public static void main(String arg[])
{
C c1 = new C();
a1.dispA();
c11.dispC();
}
}

53

Visibility Control:- Java provides 5 types of visibility control. These are
public, protected, friendly access (default), privateprotected and private.
Public Access:- It is visible only to the entire class, subclasses and other
classes in the same package and other packages in same class and subclasses. It
is accessible to every where in the java.
Syntax:- public int a; public void display()

Protected:- It is visible only to all classes and subclasses in the same package
and also to subclasses in other package. Non-subclasses in other package can
not access the protected variable.
Syntax:- protected int c; protected void display()

Friendly access:- It is the default access specifier in Java. It is accessed in
the same package only. It is accessed in the same classes, subclasses and other
classes in the same package.
Syntax:- int a; void big()

Private protected:- It is declared with two keywords private and protected.
It gives the visibility level in between the protected and private. It is be
visible only in subclasses in same packages and other packages.
Syntax:- private protected int a;

Private:- It is highest degree of protection. They are accessible only within
their own class. They cannot be inherited.
Syntax:- private int a; private void display()

 Public Protected Friendly Private
Protected

Private

Same class Yes Yes Yes Yes Yes
Sub class
In same package

Yes Yes Yes Yes No

Other classes in
same package

Yes Yes Yes No No

Subclass in other
package

Yes Yes No Yes No

Other classes in
other package

Yes No No No No

54

 MULTITHREADED PROGRAMMING
 Thread is similar to a java program that has a single flow of control.
 It has beginning, a body, and an end, and executes commands sequentially.
 Multithreading is a program is divided into two or more subprograms, which

can be implemented or executed at the same time in parallel.
 For example, one subprogram can display an animation on the screen while

another may build the next animation to be displayed.
 Java allows us to use multiple flows of control in developing programs.
Each flow of control a separate small program known as thread. A program that
contains multiple flows of control is known as multithreading.
 Threads are extensively used in Java enabled browsers such as Hotjava.
Creating Threads:-
 Threads are implemented in the form of objects that contain a method

called run().
 The run () method is the heart and soul of any thread.
 The run() method should be invoked by an object of the thread.
 The run() method invoked with the help of another thread method called

start().
A new thread can be created in two ways.

1. By creating a thread class:-
It define a class that extends Thread class and executes run() method.

 Creating a new class extending the Thread class.
 Creating a run() method in a class preceded by public keyword.
 Creating a object to the thread class.
 Accessing the run() method using start() method.

Syntax:- class classname extends Thread
 {

public void run()
 { }
 }

Example:- class A extends Thread
 { public void run()
 {

body of the run
}

 }

55

Example:-
class A extends Thread
{
 public void run()
 {
 for(int i=1;i<=5;i++)
 {
 System.out.print("thread A="+i);
 }
 }
}
class Threadtest
{
 public static void main(String mdv[])
 {
 A a1=new A();
 a1.start();

 }
}

2. By converting a class to a thread:- Define a class that implements
Runnable interface. The Runnable interface has only one run() method.

Syntax:- class classname implements Runnable
 { public void run()
 { }
 }
 Declare the class as implementing the Runnable interface.
 Implement the run() method.
 Create a thread by defining an object, instantiated from this Runnable
 Call the threads start () method to run the thread.
We can create and run an instance or object of our thread class.

Syntax:- classname objectname = new classname()
Example:- A a1 = new A();
 We can invoke or execute the run method by using start()
Syntax:- Thread_object.start();
Example:- a1.start()

56

Example:-
class A implements Runnable
{
 public void run()
 {
 for(int i=1;i<=5;i++)
 {
 System.out.println("i="+i);
 }
 }
};
class ttest1
{
 public static void main(String[] args)
 {
 A a1=new A();
 Thread a2=new Thread(a1);
 a2.start();
 }
}

57

Program:-
class A extends Thread
{ public void run()
 {
 for(int i=1;i<=5;i++) System.out.println("Thread A: i="+ i);
 }
};
class B extends Thread
{
 public void run()
 {
 for(int j=1;j<=5;j++) System.out.println("Thread B: j="+ j);
 }
};
class C extends Thread
{
 public void run()
 { for(int k=1;k<=5;k++)
 System.out.println("Thread C: k="+ k);
 }
};
class multithread
{ public static void main(String[] args)
 { A a1 = new A();
 B b1 = new B();
 C c1 = new C();
 a1.start();
 b1.start();
 c1.start();
 }
}
Life Cycle of a Thread:- The life time of a thread can have 5 states. They
are

1. New born state
2. Runnable state
3. Running state
4. Blocked state
5. Dead state
A thread is always in one of these 5 steps. Thread can move from one state

to another.

58

Newborn state:-
 We create a new thread; the thread is born and is in newborn state.
 The thread is not ready for running.
 It can be schedule for running using start () method.
 It can be Kill by using stop () method.
 The thread was scheduled it will move to the Runnable state.
 The thread was killed it will move to Dead state.

Runnable State:-
 It means the thread is ready for execution and is waiting for the availability

of the processor.
 The threads are joined in the queue.
 Threads are executed/scheduled depends their priorities.
 High priority threads are executed first than lower priorities threads.
 If all the threads have equal priority then they are executed in round robin

fashion i.e. first-come, first serve.

New Born
State

Runnable
State

Dead
State

New Born
State

Running
State

Runnable
State

Blocked
State

Dead State

start () stop ()

59

Running State:-
 It is the state that the processor has given its time to the thread for its

execution.
 A higher priority thread runs the thread.
 A running thread may give up its control in one of the situations.

1. It has been suspended using suspend() method. A suspended thread can
be revived or recalled by using the resume() method. We want to
suspend a thread for some time due to some reason, but do not want to
kill it.

2. It has been made to sleep. We can put a thread to sleep for a specified
time period using the method sleep(time) where time is milliseconds.
The thread re-enters the Runnable state as soon as this time period is
elapsed.

3. The thread has been waited until some event occurs by using the wait()
method. The thread can be scheduled to run again using the notify()
method.

Blocked State:-

 A thread is said to be blocked when it is not permitted from entering into
the Runnable state and the running state.

 This happens when the thread is suspended, sleeping or waiting some
time.

 A blocked thread is considered “not Runnable” but not dead and to run
again.

Dead State:-
 Every thread has a life cycle.

Running Runnable Blocked

Suspend ()

Running Runnable Blocked

Running Runnable Blocked

resume ()

sleep ()

After t

wait ()

Notify ()

60

 A running thread ends its life when it has completed executing its run()
method.

 It is a natural death.
 A thread can be killed as soon as it is born, or while it is running or even it

is in “not Runnable” condition.
Thread Priority:- In Java, each thread is assigned a priority, it affects the
order in which it is scheduled for running. The threads of the same priority are
given equal preference by the java scheduler. Java permits us to set the
priority of a thread using setPriority () method.
Syntax:- threadname.setPriority (number)
 The number is an integer value to set the thread priority. The thread
class defines several priority constants.

MIN_PRIORITY = 1
NORM_PRIORITY = 5
MAX_PRIORITY = 10

The default setting is NORM_PRIORITY.

61

EXCEPTION HANDLING:-
An Error may produce an incorrect output or may terminate the execution

of the program suddenly or even may cause the system to crash.
Errors may broadly be classified into two categories

 compile time errors
 runtime errors

Compile time errors:- All syntax errors will be detected and displayed by the
Java compiler. These errors are known as compile-time errors. Whenever the
compiler displays an error, it will not create the .class file. The most common
compile-time errors
 Missing semicolons
 Missing brackets in classes and methods
 Misspelling of identifiers
 Missing double quotes in strings
 Use of undeclared variables

Run-time errors:- These errors was occurred at the run time. A program may
compile successfully create the .class file but may not run properly. Most
common run time errors are
 Dividing an integer by zero
 Accessing an element that is out of the bounds of an array
 Trying to store a value into an array of an class type
 Converting invalid string to a number
 Accessing a character that is out of bounds of a string

Exception:-
 An exception is a condition that is caused by a run-time error in the

program.
 Exception handling mechanism is to provide to detect and report runtime

errors, so that appropriate action can be taken.
 This mechanism suggests error-handling code. That performs the some

task.
1. Find the problem
2. Inform that an error has occurred
3. Receive the error information
4. Catch &Take corrective actions.

The error handing code basically consists of two segments, one to detect

errors and to throw exceptions and the other to catch exception and to take
corrective actions.

62

PREDEFINED EXCEPTIONS:-
ArithmeticException It is caused by Mathematical errors

such as division by zero
ArrayIndexOutOfBoundsException Caused by bad array Indexes
ArrayStoreException Caused a program tries to store the

wrong type of data in an array
FileNotFoundException Caused by an attempt to access a non-

existent file
IOException Caused by General I/O failures
NumberFormatException Caused when a conversion between

string and number fails
OutOfMemoryException Caused when there is not enough

memory to allocate a new object
NullPointerException It caused by referencing a null object
StringIndexOutOfBoundsException Caused when a program attempts to

access a nonexistent character
position in a string

StackOverflowException Caused when the system runs out of
the stack

Syntax of Exception Handling:-

 Java uses a keyword try to a block of code that is cause an error
condition and throws an exception. A catch block defined by the keyword catch
“catches” the exception “thrown by the try block and handles it properly.
Syntax:- try
 {
 body of the try block;
 }
 catch(Exceptiontype e)
 {
 statement; }

Try Block
Statement that causes an

exception

Catch Block
Statement that handles the

exception

63

 The try block can have one or more statements that could generate an
exception. If any one statement generates an exception, the remaining
statements in the block are skipped and execution jumps to the catch block is
placed next to the try block.
 The catch block too can have one or more statements are necessary to
process the exception.
Example:-
 import java.io.*;

class error
 { public static void main(String arg[]) throws IOException
 {
 DataInputStream di=new DataInputStream(System.in);
 int a,b,c,d;
 try
 {

System.out.println(“enter the values a,b & c”);
a = Integer.parseInt(di.readLine();
b=Integer.parseInt(di.readLine());
c=Integer.parseInt(di.readLine());
d= (a / (b-c));
System.out.println(“d=” + d);
}
catch(ArithmeticException e)
{ System.out.println(“Divisiable by 0”);
}

 }
} The program displays an error message; if the (b-c) is equal to zero
otherwise it displays the “d” value.
Multiple catch statements:- The try block can have more than one catch
block. When an exception in a try block is generated, the java treats the
multiple catch statements like cases in a switch statement. The first
statement matches the exception will be executed and the remaining
statements will skip.
 Java supports another statement known as finally statement that can be
used to handle an exception that is not caught by an of the catch statements.
This block can be used to handle any exception generated within a try block. It
is like a default case in a switch statement.
Syntax:- try {
 Body of the try block;
 }
 catch(Exceptiontype1 e)

64

 { body of catch1; }
 catch(Exceptiontype2 e)
 { body of catch2; }
 finally
 { body of the finally block; }
Example:-

import java.io.*;
class error1

 {
 public static void main(String arg[]) throws IOException
 { int n,i;
 int a[] =new int[10];
 DataInputStream di=new DataInputStream(System.in);
 try

{
System.out.println(“enter n value”);
n=Integer.parseInt(di.readLine());
for(i=0;i<=n;i++)
 a[i]=Integer.parseInt(di.readLine());
System.out.println(“the printing an array”);
for(i=0;i<=n;i++)
 System.out.println(a[i]+ “ “);
}

catch(ArrayIndexOutofBoundsException e)
{
System.out.println(“Array Index Error”);
}
catch(ArrayStoreException e)
{
 System.out.println(“Invalid Type stored”);
}
catch(ArithmeticException e)
{
 System.out.println(“Invalid Type stored”);
}
finally
{
System.out.println(“Unexcept Error”);
}
}

 }

65

APPLET PROGRAMMING

Applets:-
 Applets are small java programs that are used in Internet computing.
 They can be transported over the Internet from one computer to

another.
 It can perform arithmetic operations, display graphics, play sounds,

accept user input, create animation and play interactive games.
Local Applet:-

 An applet was developed locally and stored in a local system is known as a
local applet.

 When a web page is trying to find a local applet, it does not need to use
the Internet.

 It simply searches the directories in the local system and locates and
loads the specified applet.

Remote Applet:-
 An applet which was developed by someone and stored on a remote

computer connected to the internet. We can download the remote applet
onto our system via the Internet and run it.

Applet differ from Applications:- Applets are not full featured application
programs.
 Applets do not use the main () method for initiating the execution of the
code.
 Applets cannot be run independently. They are run from inside a web page
using the HTML tag.
 Applets cannot read from or write to the files in the local computer.
 Applets cannot communicate with other servers on the network.
 Applets cannot run any program from the local computer.
 It does not use native methods.

APPLET LIFE CYCLE:- Every Java applet inherits a set of default behavior
from the Applet class. The applet states include
 Born or Initialization state
 Running State
 Idle State
 Dead or destroyed state
 Display state

66

Initialization or Born State:-
 It is the first state in the applet life cycle.
 Applet enters the initialization state when it is first loaded.
 It uses the init () method of Applet class, then applet is born.
 At this stage, we can create objects needed by applet, set up initial values,

load images or fonts and set of colors.
 This initialization occurs only once in the applet’s life cycle.

public void init()
{
 body of the action
}

Running State: -
 Applet enters the running state when the system calls the start () method

of Applet Class.
 This occurs automatically after the applet is initialized.
 Starting can also occur if the applet is already in “stopped” or “idle” state.
 The start () method may be called more than once.

public void start ()

 {
 body of the action
 }

Idle or Stopped State:-
 An applet becomes idle when it is stopped from running.
 Stopping occurs automatically when we leave the page containing the

currently running applet.
 We can stop the state by using stop () method.
 The stop () method may be called more than once.

public void stop ()

 {
 body of the action
 }
Dead State:-
 An applet is said to be dead when it is removed from memory.
 This occurs automatically by invoking the destroy () method when we quit

the browser.
 Like initialization, destroying stage occurs only once in the applet’s life cycle.

67

public void destroy ()
 {
 body of the action
 }

Display State:-
 Applet moves to the display state whenever it has to perform some output

operation on the screen.
 This happens immediately after the applet enters into the running state.
 The paint () method is called to accomplish this task.
 Almost every applet will have a paint () method.

public void paint (Graphics g)
 {
 body of the action
 }

import java.applet.*;
import java.awt.*;
public class app extends Applet
{
 public void init()

{ body of initialization;
}
public void start()
{ body of start
}
public void stop()
{ body of stop
}
public void destroy()
{ body of destroy
}
public void paint(Graphics g)
{ body of display
}

}

Born
State

Running
State

Idle
State

Dead
State

